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Abstract 

We discuss the convergence of Fourier method for scalar nonlinear conservation laws 

which exhibit spontaneous shock discontinuities. Numerical tests indicate that the con- 

vergence may (and in fact in some cases must) fail, with or without post-processing of the 

numerical solution. Instead, we introduce here a new kind of spectrally accurate vanish- 

ing viscosity to augment the Fourier approximation of such nonlinear conservation laws. 

Using compensated compactness arguments, we show that this spectral viscosity prevents 

oscillations and convergence to the unique entropy solution follows. 
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1. Introduction. 

In this paper we study the convergence of spectral methods for nonlinear conservation 

laws. Specifically, we consider what is accepted by now as the universal model problem 

for such scalar laws, namely, the inviscid Burgers' equation 

c a u2(z,t) 
) = 0  

a 
at dz 2 -u (z , t )  + -( 

subject to given initial data u(z,t = 0). Among the basic features of solutions to this 

problem 161, we recall that they may develop spontaneous jump discontinuities (shock 

waves) and hence the class of weak solutions must be admitted; that within this class, 

there are many possible solutions; and that in order to single out the unique 'physically 

relevant' solution among them, (1.1) is augmented with an additional entropy condition 

which requires 

The existence of physically relevant shock waves in the solution is reflected by the strict 

(distributional) inequality in (1.2). 

We want to solve the 2~-periodic problem (l.l), (1.2) by the spectral-Fourier method. 

To this end, we approximate the spectral-Fourier projection of u(z, t ) ,  

by an N-trigonometric polynomial, U N ( Z ,  t ) ,  

N 

k = - N  

Starting with 

the classical Fourier method [3] lets U N ( Z , ~ )  evolve at a later time according to the ap- 

proximate model 
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Noting that PN commutes with differentiation, we can rewrite (1.6) in the equivalent form 

-ulv(z,t) a + - ( - u & ( z , t ) )  a 1  = ( I  - P N ) - ( - f l N ( z , t ) )  a 1 2  - 
at ax 2 a x  2 

Let us multiply (1.7) by u ~ ( z , t ) :  since u ~ ( z , t )  is orthogonal to the righthand-side of 

(1.7), we find after integration that 

Thus 1 11% (z, t)dz is conserved in time 

J --* J --* J - - *  

and this yields the existence of a weak limit E ( z , t )  =tu lim u ~ ( z , t ) .  Does Ti(z,t) solves 
N--r- 

our problem? Unfortunately the answer is no. For otherwise, if ii(z, t )  is a weak solution of 

(l.l), then P ~ u L ( z , t )  and hence u%(z ,  t )  should tend weakly to i i2(z, t) ,  and consequently, 

E ( z , t )  should be the strong limit of u ~ ( z , t ) ;  but then (1.9) implies that JTaii2(z,t)dz is 

also conserved in time, and by (1.2) this contradicts the appearance of physically relevant 

shock waves in our solution. 

In practical applications, spectral methods are often augmented with smoothing pro- 

cedures in order to give a helping hand toward their spectral convergence. Indeed, conver- 

gence for smoothed versions of spectral (and in particular pseudospectral) methods, was 

established in the linear case, e.g. [SI, [7], [13]. However, arguments similar to the above 

show that with nonlinear problems, convergence of the Fourier method fails despite the 

additional smoothing of its solution. We leave the details for the appendix. Instead, we 

propose here a different way to enforce the convergence of the spectral-Fourier method 

without sacrifying spectral accuracy. This is accomplished by introducing, in Section 2, 

a new type of spectral vanishing viscosity. In Section 3 we prove the convergence of the 

proposed method using compensated compactness arguments, and in Section 4 it is shown 

that the limit solution respect the entropy condition (1.2). In Section 5 we extend our 

discussion to systems of conservation laws, and we show how the spectral vanishing viscos- 

ity can be used to enforce the correct entropy dissipation in such case. Finally, numerical 
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experiments with the proposed method of spectral regularization are presented in Section 

6. 

2. The Spectral  Vanishing Viscosity, 

It is well known [6] that the unique entropy solution of ( l . l ) ,  (1.2) is the one identified 

with the small viscosity limit of the regularized problem 

With the vanishing viscosity method [9], one replaces the exact derivatives in (2.1) by 

their discrete counterpart, the viscosity coefficient Q is chosen as (a nonlinear) positive 

grid dependent quantity,.and the role of e is played by some fixed power of the vanishing 

grid size, e - (Ax)', in order to yield an s-order accurate approximation of (1.1). Yet in 

order to respect spectral accuracy, a more delicate viscous regularization is required. To 

this end we consider viscosity coefficients of the form Q = I - Pm. The resulting viscosity 

terms are of spectrally small order of magnitude in the sense that for any s > 0 we have 

in fact these terms are exponentially small in the analytic case [lo]. Togetller with this 

kind of spectral vanishing viscosity, the spectrally accurate Fourier approximation of (1.1) 

amounts to 

and we raise the question of its convergence as N tends to infinity. Here E e ( N )  1 0 

and m m(N) < N are free parameters which are yet to be determined, subject to the 

spectral accuracy restriction m(N) t 00. In the next two sections we find such admissible 

parameters which provide a positive answer to the convergence question. 
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3. Spectral Convergence to a Weak Solution. 

We consider the approximate Fourier method (2.2)’ which we rewrite as 

In order to prove convergence of this method we need a couple of a’ priori estimates on its 

solution. To this end, we multiply (3.1) by U N ,  

and integrate over the 27r period: the integrals of the second and third terms vanish by 

periodicity and orthogonality, and we are left with 

(3.3) 

This gives us the a’ priori bound on the amplitudes of the solution we had before in (1.9), 

and even a little more. More precisely, temporal integration of (3.3) yields 

and hence for u ~ ( z , t )  = i&(t)eakZ we have - 

equality (3.4) also gives us the second a’ priori estimate 

Equipped with these estimates we may turn now to the convergence proof of the 

Fourier method (2.2). We will establish spectral convergence for an admissible set of 

parameters E ( N )  1 0, m(N) t 00, using Tartar’s div-curl lemma [14]. In order to apply the 

latter in our case, we have to verify that the four expressions appearing on the righthand- 

sides of (3.1) and (3.2) are ‘nice’ ones, namely, that these expresssions are the s u m  of 



5 

terms, each of which lies either in the compact of H i : ( z , t ) ,  or - by Murat's lemma, in a 

bounded set of Lto,(z,t).  In the following lemmas we collect the necessary estimates in 

this direction. 

We begin with the first term on the right of (3.1). Here, the following estimate whose 

proof is postponed to the end of this section, is essential. 

Lemma 3.1. There ezists a constant Const12 (depending on Const1 and Constz) such 

that form < 3 N  we have 

Next, we use the a' priori estimate (3.6) to conclude that, as E tends to zero, the 

second term on the right of (3.1) belongs to the compact of HG, ' ( z , t ) .  

Lemm-a 33; The fd!ewing cstimcte he!& 

To treat the expressions on the right of (3.2), we first prepare 

Lemma 3.3. There enst constants Const3 and Const23 (Const23 depending on Const2 

and Consts) such that 

(3.9) 

(3.10) 

Proof. The inequality (3.9) is immediate in view of l lPmw 11 qo, (= . t )  5 md.IIuNIIL, to5 (r , t )  

and the a' priori estimate (3.5). To prove (3.10) we invoke the identity 

and use the a' priori estimate (3.6) to upper bound the first norm, and (3.9) for the second 

one. 
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In the next two lemmas we turn to deal with the righthand-side of (3.2). For its first 

member - which we express as 

we have 

Lemma 3.4. There ezists a constant Const123 (depending on Const12 and Const23) such 

that the following estimates hold. 
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is estimated as follows. 

Lemma 3.6. There ezists a constant Constg~ (depending on Const2 and Const3) such 

that the following estimates hold. 

Proof. The first inequality, (3.16), follows from the a' priori estimate (3.6), 

To prove the second inequality we upper bound 

and use the a' priori estimates (3.6) and (3.9) to obtain (3.16) with Const32 = Const2 . 
(Const3 + 1). 

We are now ready to find the admissible parameters which meet the assumptions of 

the div-curl lemma. By (3.16), the term IV2 is bounded in Lf,,(s, t)  if d 2 r n  5 Const.; 

choosing e - Con-f* m , then by (3.13) the term 1112 is bounded in L:,,(z, t)  provided 

rn2N--'j2 5 Const; choosing m 5 min (Const."14, $ N )  we conclude by Lemma 3.1 

and Lemma 3.2, that the terms I and I1 belong to the compact of 23,: (z, t ) .  Moreover, if 

U N  is uniformly bounded, 

then by Lemmas 3.4 and 3.5 we have with this choice of parameters that the terms 1111 

and IV1 are also in the compact of HCE (2, t ) .  This completes our study of the expressions 

on the right of (3.1), (3.2) and the div-curl lemma applies in our case. We summarize by 

stating 
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Theorem 3.6. Consider the spectral approzimation (2.2) with parameters (e ,  m) which 

satisfy 

1 
4 

E = E ( N )  - Const.N-2P , m = m ( N )  - Const.NP , 0 < p 5 - . (3.18) 

Assume that its solution, U N ( Z , ~ ) ,  remains unifomly bounded, (3.17). Then U N ( Z ,  t )  con- 

verges boundedly a.e. to a weak solution of the conservation law (1.1) 

Proof. Let u ( j ) ( z ,  t )  denote the weak limit of u',(z, t )  
- 

Applying the div-curl lemma to (3.1), (3.2) we have the relation 

which implies strong convergence. To establish this implication, we follow the argument 

of Tartar [15] (see also [14]), who suggests to consider the weak limit of ( U N  - u ( l ) ) l ,  
- 

using (3.19) and rearranging, we find 
- - 2  

wlim ( U N  - u(1))* = -3 - (u(1))2] 5 o , 
- 

NdOO 
- -  

and hence I & ( ~ )  = ( ' ~ ( ' 1 ) ~ .  Consequently, uN(z , t )  converges strongly to iL(z,t) E u ( ' ) ( z , t )  

in LPoc(z,t), and by (3.1), 7i(z,t) is a weak solution of (1.1). 

We do not claim that our parametrization (3.18) is optimal. In particular, the re- 

strictive choice of m ( N )  could be improved as indicated by the numerical tests described 

in Section 6. On the other hand, we note that the E parametrization (3.18) such that 

E m 2  - Const. yields, in view of Lemma (3.10), 

(3 .20~)  

which is in complete agreement with the behavior of the viscous regularization model (2.1), 

where 

(3.206) 
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Our choice of p 
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rameters in (3.18) depends heavily on the essential estimate (3.7), 

and we conclude this section with its proof. 

Proof. (of Lemma 3.1.) We should upper bound the norm of 

(3.21) 

The first intergral on the right does not exceed 

and using Cauc iy-Schwartz inequality this is less than 

According to our assumption m e 3N. Hence for p > N we have p/2 > rn, and by the a' 

priori estimates (3.5), (3.6), the last expression is bounded from above by 

The second integral on the right of (3.21) can be treated similarily and Lemma 3.1 follows 

with ConstI2 = 4 (Constl - C0nst2) ' /~.  
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4. Spectral Convergence to the Entropy Solution. 

In the last sections we have seen that the spectral approximation, U N ( Z , ~ ) ,  has a 

strong limit, I&- slim uN(z,t) = E(z , t ) ,  which iS a weak solution of (1.1). In this 

section we show that this limit is in fact the unique entropy solution of (1.1) satisfying the 

entropy inequality (1 2). 

Theorem 4.1. Consider the spectral approzimation (2.2) with parameters ( E ,  m) which 

satisfy 

N-.m 

( 4 4  E = E ( N )  - Const.N-2P, m = m(N) - Const.NP, 0 < p < 114 . 

Assume that its solution, UN(Z,t) remains uniformly bounded, (9.17). Then uN(z ,  t )  con- 

verges boundedly a.c. to the unique entropy solution of the conservation law (1.1). 

Proof. Consider the righthand-side of (3.2) which consists of the sum of two terms, I11 + 
W. We will show that this s u m  tends weakly to a negative measure and hence convergence 

to the entropy inequality (1.2) follows. 

As in (3.11) we write III = 1111 + III2, where by Lemma 3.4 

and in view of our slightly strengthened parametrization (5.1) (compared with (3.18)), 

I 

I 

Consequently, the first term on the right of (3.2), 111, tends weakly to zero, and we 

turn to deal with the second one which is given in (3.14) as IV = IV1 + IV2. By Lemma 

3.5 we have 

, I  
r” 

5 const.lluNII * N - P - + O ,  
(4.4) IlIV1 II a,: ( = 9 t )  Loo (=,e) 

and hence the term IV1 also tends weakly to zero. Finally we are left with the term 

IV2 = -&%(I - P,)%, which we write as 
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It follows from (3.20a), that - E ( % ) ~  tends weakly to a negative measure, 

Also, the pessimistic bound 

yields by Lemma 3.3, 

and hence weak convergence to zero. We conclude with 

Here we have 

and by Lemma 3.3. 

(4.10) 

In summary, we have by (4.2)-(4.10) that the righthand-side tends in the sense of 

distributions to a negative measure, while the (weak) limit on the left gives us 

a 1-2 a 1-3 - ( - u  ) + - ( -  ) I 0 , at 2 a x  3 

as asserted. 
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5. Systems of Conservation Laws. 

It is instructive to compare between the spectral methods before and after spectral 

vanishing viscosity was added. Before viscosity was added we had, in (1.6), a coupled 

system of 0.D.E’s in the Fourier space, which amounts to 

d 1 
- c k ( t )  + Zik dt cp(t)eq(t) = 0 

p+q=k  

In this case the total quadratic entropy was conserved, (l.Q), which is responsible to the 

divergence of the method. After viscosity was added in (2.2), the resulting system in the 

Fourier space reads 

(5 .2~)  
d 1 

- G k ( t )  + Zik dt S p ( t ) S q ( t )  = 0 
p + q = k  

(5.2b) d, 1 
-uk(t) + Z i k  cp(t)cq(t) = -ek2&(t) lkl > m . dt . p+q=k 

An increasing portion of the spectrum is treated here as in the diverging case (5.1). Yet, 

the added viscosity for the high Fourier modes in (5.2b) is responsible for the correct rate 

of entropy dissipation (3.6) which in turn implies convergence in the scalar case. In this 

section we show how to enforce similar entropy dissipation by spectral vanishing viscosity 

in systems of conservation laws. To this end we proceed as follows. 

Consider the conservative system 

(5.3) 

which is assummed to be equipped with an entropy function U(u), Le., an convex function 

whose Hessian Vu,, symmetrizes the Jacobian matrix fu, e.g. (21, [ll]. Using the entropy 

variables 

(5.44 
au 

u =- u(u) = -(u) au , 

the conservative system (5.3) takes the equivalent symmetric form, consult [4], [8], (12) 

(5.4b) 



The Fourier approximation of (5.3) will be based on this formulation: together with addi- 

tional vanishing spectral viscosity we arrive at 

(5.54 

where ~ N ( 2 , t )  is the projected vector of entropy variables 

Multiply (5.5a) by UN (5,  t )  and integrate over the 2~-period: taking into account orthog- 

onality we have 

The second integrand on the left is a perfect derivative of the associated entropy flux and 

hence its integral vanishes. Integration by parts on the right yields 

which shows that entropy dissipates at the correct rate. In particular, arguing along the 

lines of Lemma 3.3 and using the strict convexity of U ( u ) ,  we conclude that 

(5.7) 

This is analogous to the behavior of the viscous regularization for (5.3) - compare (3.20) 

in the scalar case. 
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0. Numerical Experiments. 
The Fourier method with spectral vanishing viscosity was applied to the periodic 

Burges’ equation (1.1) with u(z,t = 0) = sinz as initial data. The resulting O.D.E. 
system for the Fourier coefficients, see (5.2) 

( 6 . 1 ~ )  

(6.lb) 

d ,  1 
- ~ k ( t ) +  S i k  G p ( t ) G q ( t )  = - & k 2 0 ( k ) G k ( t )  , Ikl 5 N , 
dt  

was integrated up to time t = 1.5, using the fourth-order Runge-Kutta method. 

The number of significant modes was chosen as a fraction of the total number, rn = BN. 

The numerical experiments indicate, as expected, that the quality of the results is more 

sensitive to the dependence of e on m; further investigation is necessary in order to exhaust 

this point. In the following examples we have, Em - 0.25, based on considerations of 

minimizing the total-variation of the numerical solution. With this choice of parameters, 

Figure 6.1 shows that the numerical solution converges strongly (but not uniformly) to 

the entropy solution of (1.1). This is in sharp constrast to the oscillatory behavior of the 

viscosity-free Fourier method in Figure 6.2, where Q ( k )  G O*. Other parametarizations of 

E ,  quoted in Figures 6.3 and 6.4, demonstrate the sensitivity of the computed solution 

mentioned earlier. 

To improve the quality of these results, the proposed method (6.la) was implemented 

with a spectral vanishing viscosity g ( k )  which is smoothly varying between zero and one, 

say, for 5 Ikl < m. Figures 6.5 and 6.6 show that this kind of viscosity prevents 

the propagation of the Gibbs phenomenan into the whole computational domain that was 

noticed earlier. This is analogous to the spectral recovery in shadowed regions between 

propagating linear discontinuties described in [7]. 

i 

* In fact, a slight amount of dissipation was introduced in this case due to the time 

integrator. 
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The Fourier method with spectral vanishing viscosity ... and without spectral viscosity. 
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The Fourier method with various parameterizations of spectral vanishing viscosity. 

- *.- 
S P C C T R N  r m )  NH I r S -  9 T - l  SO 
N- 64 11-16 Elf- 006 DATA 102 - 
C a L  POINTS WLUX- 2 *TILT- 0 I 2  

., "I . 

I. 
Figure 6.3. Figure 6.4. 



The Fourier method with smooth spectral vanishing viscosity, 
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Figure 6.6. 
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APPENDIX 

A. Failure of Convergence with Post-Processing. 

In practical applications the classical Fourier method is often coupled with certain 

smoothing procedures whose purpose is to gain spectral convergence that otherwise might 

be lost. In a typical case, the solution is post-processed via a convolution with a smoothing 

kernel QN Q N ( x )  

In order to maintain spectral accuracy, the convolution with such smoothing kernel should 

be highly accurate with that of Dirac’s &distribution. We shall make a minimal assumption 

in this direction, requiring that for all square-integrable functions ( p ( x )  we have 

Such smoothing procedure enables, for example, spectral recovery of solutions to linear 

hyperbolic problems in the presence of propagating initial discontinuities, e.g. [l], (71. 

We will show that the smoothed version of the Fourier approximation to the nonlinear 

inviscid Burgers’ equation (l.l), 

- U N ( z , t )  a -k - [ - P N ( Q N  a 1  * u N ( x , t ) ) 2 ]  = 9 

at a x  2 

where the solution (rather than the flux) is convolved with kernels satisfying (a.2), does 

not converge to the entropy solution of (1.1). 

To thia end we convolve (8.3) with Q N  to find that W N ( Z , ~ )  = Q N  * U N ( Z , ~ )  satisfies 

Multiplying (8.4) by UN ( x ,  t )  and integrating over the %-period we obtain 
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or, in view of orthogonality 

This implies that our smoothed approximation W N ( Z , ~ )  = QN * U N ( Z , ~ )  converges to a 

weak limit w lim W N ( Z ,  t )  = G(z, t). Now, suppose that G(z, t) is a weak solution of (1.1); 

then this will lead us to the conservation of JzG2(s , t )dz  which shows that E(z,t)  is not 

the entropy solution (1.1). Indeed, if m(z,t) satisfies (1.1) then by (a.4), QN * P ~ w $ ( z , t )  

tends weakly to tii2(z, t) 

N d O O  

It follows from (a.5) that  IIPNw&(.,~)~~~~(~, is bounded, and together with (a.2) this 

implies that for all Cr-test  functions p(z) we have 

Adding this to (a.6), we conclude that P ~ w & ( z , t )  and hence w $ ( z , t )  tend weakly to 

E2 (z, t). Consequently E(z,  t) is the strong limit of our smoothed approximation 

Finally, in view of (a.5) we can apply (a.2) to find that 

N 

(Q.9) 

From (a.8) and (a.9) it follows that F ( z , t )  is the strong limit of Q g 2  * U N ( Z , ~ ) ,  and the 

strong limit of (8.5) tells us that Jz g2(z, t)dz is conserved in time which completes our 

asserted contradiction. We summarize by stating 

Theorem A.l. The Fourier method (a.3) which employs m y  smoothing kernel satisfying 

(a#), doc8 not converge to the entropy solution of (1.1), (1.2). 

11s~ * ulv(Z,t) - Qg2 * UN(z , t ) l lLOD(=)  5 2 11 - & N I  * ?k,N - I%(t)l N<z 
q= N 
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